Tính chất Nhóm_cyclic

Định lý cơ bản của các nhóm cyclic: Nếu G {\displaystyle G\,} là một nhóm cyclic cấp n {\displaystyle n\,} thì mọi nhóm con của G {\displaystyle G\,} cũng là nhóm cyclic. Ngoài ra, bậc của một nhóm con của G {\displaystyle G\,} là ước của n {\displaystyle n\,} và với mỗi ước dương k {\displaystyle k\,} của n {\displaystyle n\,} nhóm G {\displaystyle G\,} có đúng một nhóm con cấp k {\displaystyle k\,} .

Mọi nhóm cyclic hữu hạn là đẳng cấu với nhóm { 0, 1, 2,..., n − 1 } (theo phép cộng modulo n), và nhóm cyclic vô hạn bất kỳ đẳng cấu với nhóm cộng các số nguyên Z.

  • G là nhóm abel; nghĩa là phép toán của nhóm có tính giao hoán: gh = hg (với mọi g, h trong G). Đó là vì g + h mod n = h + g mod n.
  • Nếu n là hữu hạn thì g n = e {\displaystyle g^{n}=e} vì n mod n = 0.
  • Nếu n = ∞, thì G có đúng hai phần tử sinh: là 1 và −1 đối với Z, và là các ảnh của chúng qua một đẳng cấu với các nhóm cyclic vô hạn khác.
  • Nếu n là hữu hạn, thì G có đúng φ(n) phần tử sinh trong đó φ() là phi hàm Euler
  • Mọi nhóm con của G là nhóm cyclic. Mỗi nhóm con hữu hạn của G đẳng cấu với nhóm { 0, 1, 2, 3,... m − 1} theo phép cộng modulo m. Mỗi nhóm con vô hạn của G đẳng cấu với mZ với m nào đó, là ảnh đơn cấu của Z.
  • Gn là đẳng cấu với Z/n (nhóm thương của Z trên nZ) vì Z/n = {0 + nZ, 1 + nZ, 2 + nZ, 3 + nZ, 4 + nZ,..., n − 1 + nZ} ≅ {\displaystyle \cong } { 0, 1, 2, 3, 4,..., n − 1} theo phép cộng modulo n.

Chính xác hơn, nếu d là một ước của n, thì số các phần tử trong Z/n có cấp d là φ(d). số các lớp kề của m là n / UCLN(n,m).

Nếu p là một số nguyên tố, thì chỉ có nhóm (sai khác một đẳng cấu) với p phần tử là nhóm cyclic Cp hoặc Z/p.

Tích trực tiếp của hai nhóm cyclic Z/n và Z/m là cyclic nếu và chỉ nếu n và m llà nguyên tố cùng nhau. Chẳng hạn Z/12 là tích trực tiếp của Z/3 và Z/4, nhưng không là tích trực tiếp của Z/6 và Z/2.

Từ định nghĩa này thấy ngay rằng các nhóm cyclic có biểu diễn nhóm đơn giản Cn = < x | xn >.

Định lý cơ bản của các nhóm abel hữu hạn sinh: mọi nhóm abel hữu hạn sinh là tích trực tiếp của hữu hạn nhóm cyclic với một nhóm abel tự do.

Z/n và Z cũng là các vành giao hoán. Nêu p là số nguyên tố, thì Z/p là trường hữu hạn ký hiệu là Fp hay GF(p). Mọi trường hữu hạn với p phần tử là đẳng cấu với trường này.

Các đơn vị của vành Z/n là các số nguyên tố với n. Chúng tạo thành một nhóm theo phep nhân modulo nvới φ(n) phàn tử. Nó được ký hiệu là (Z/n)×. Chẳng hạn, ta có (Z/n)× = {1,5} với n = 6, và có (Z/n)× = {1,3,5,7} với n = 8.

Thực ra, người ta đã biết rằng (Z/n)× là cyclic nếu và chỉ nếu n là 2 hoặc 4 hoặc pk hoặc 2 pk với một số nguyên tố lẻ p và k ≥ 1, trong trường hợp này mọi phần tử sinh của (Z/n)× được gọi là một căn nguyên thủy modulo n. Chẳng hạn, (Z/n)× là cyclic với n = 6, nhưng không là cyclic với n = 8 (nó đẳng cấu với nhóm 4 Klein.

Nhóm (Z/p)× là cyclic với p − 1 phần tử với mọi số nguyên tố p, và được ký hiêuu là (Z/p)* vì nó chỉ chứa các phần tử khác không. Tổng quát hơn, mọi nhóm con hữu hạn của một trường là cyclic.